博客
关于我
【数论】异或
阅读量:374 次
发布时间:2019-03-04

本文共 789 字,大约阅读时间需要 2 分钟。

题目描述

SarvaTathagata是个神仙,一天他在研究数论时,书上有这么一个问题:求不超过n两两的数的gcd。

SarvaTathagata这么神仙的人当然觉得这个是sb题啦。学习之余,他还发现gcd的某一个特别好的性质:如果有两个数i,j满足gcd(i,j)=ij(这里的为c++中的异或)的话,那么这两个数组成的数对(i,j)就是一个nb的数对(这里认为(i,j)和(j,i)为相同的,并不需要计算2次)。

当然,SarvaTathagata并不会只满足于判断一个数对是否nb,他还想知道满足两个数都是不超过n并且nb的数对有多少个。

由于SarvaTathagata实在是太神仙了,他认为这种题实在是太简单了。于是他找到了你,看看你是否能解决这个问题。

输入

共一行一个整数n,含义如题所述。

输出

一行一个整数,表示nb的数对的个数。


Sample1-in
12
Sample1-out
8

Sample2-in
123456
Sample2-out
214394

思路

先设:a>b
根据异或的性质,我们可以发现a^b是会大于等于a-b的。(这个可以推一下)
然后gcd(a,b)会小于等于a-b;那么当a^b=gcd(a,b)时a ^b=a-b;
题目中我们可以枚举c = gcd(a,b),然后枚举它的倍数,使gcd(a,b)=a-b,然后和异或对比。

#include<cstdio>int n,ans;int main(){    scanf("%d",&n); for(int i = 1; i < n; ++i)  //枚举gcd(a,b)=b   for(int j = i+i; j <= n; j+=i)  //枚举倍数a     if((j^i) == j-i) ++ans;  //异或 printf("%d",ans);  //输出答案}

转载地址:http://mhkg.baihongyu.com/

你可能感兴趣的文章
nginx反向代理解决跨域问题,使本地调试更方便
查看>>
nginx反向代理转发、正则、重写、负摘均衡配置案例
查看>>
Nginx反向代理配置
查看>>
Nginx启动SSL功能,并进行功能优化,你看这个就足够了
查看>>
nginx启动脚本
查看>>
Nginx在Windows上和Linux上(Docker启动)分别配置基本身份认证示例
查看>>
Nginx在Windows下载安装启动与配置前后端请求代理
查看>>
Nginx在开发中常用的基础命令
查看>>
Nginx多域名,多证书,多服务配置,实用版
查看>>
nginx如何实现图片防盗链
查看>>
Nginx学习总结(12)——Nginx各项配置总结
查看>>
Nginx学习总结(13)——Nginx 重要知识点回顾
查看>>
Nginx学习总结(14)——Nginx配置参数详细说明与整理
查看>>
Nginx学习总结(15)—— 提升 Web 应用性能的十个步骤
查看>>
Nginx学习总结(8)——Nginx服务器详解
查看>>
nginx学习笔记002---Nginx代理配置_案例1_实现了对前端代码的方向代理_并且配置了后端api接口的访问地址
查看>>
Nginx安装SSL模块 nginx: the “ssl” parameter requires ngx_http_ssl_module in /usr/local/nginx/conf/nginx
查看>>
nginx安装stream模块配置tcp/udp端口转发
查看>>
nginx安装Stream模块配置tcp/udp端口转发
查看>>
Nginx安装与常见命令
查看>>